Global Existence and Uniqueness of Minimal Surfaces in Globally Hyperbolic Manifolds

نویسنده

  • Olaf Müller
چکیده

In this note a proof is given for global existence and uniqueness of minimal surfaces of Lorentzian type from a cylinder into certain Lorentzian manifolds for given initial values up to the first derivatives.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cauchy Problem of Lorentzian Minimal Surfaces in Globally Hyperbolic Manifolds

In this note a proof is given for global existence and uniqueness of minimal Lorentzian surface maps from a cylinder into globally hyperbolic Lorentzian manifolds for given initial values up to the first derivatives.

متن کامل

Global Existence and Uniqueness of Minimal Surfaces in Lorentzian Manifolds of Very Bounded Geometry

In this note a proof is given for local existence and uniqueness of minimal surfaces with the topology of the halfplane respectively a cylinder of Lorentzian type with values in certain Lorentzian manifolds for given initial values up to the first derivatives. Global existence is proved for the case that the target manifold is diffeomorphic to Rn.

متن کامل

Minimal Surfaces in Geometric 3-manifolds

In these notes, we study the existence and topology of closed minimal surfaces in 3-manifolds with geometric structures. In some cases, it is convenient to consider wider classes of metrics, as similar results hold for such classes. Also we briefly diverge to consider embedded minimal 3-manifolds in 4-manifolds with positive Ricci curvature, extending an argument of Lawson to this case. In the ...

متن کامل

Curvature Bounds for Surfaces in Hyperbolic 3-manifolds

We prove existence of thick geodesic triangulations of hyperbolic 3-manifolds and use this to prove existence of universal bounds on the principal curvatures of surfaces embedded in hyperbolic 3-manifolds.

متن کامل

Uniqueness of PL Minimal Surfaces

Using a standard fact in hyperbolic geometry, we give a simple proof of the uniqueness of PL minimal surfaces, thus filling in a gap in the original proof of Jaco and Rubinstein. Moreover, in order to clarify some ambiguity, we sharpen the definition of PL minimal surfaces, and prove a technical lemma on the Plateau problem in the hyperbolic space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008